ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x^{2}-2x+1=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، -2 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5}}{2\times 5}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-20}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{-16}}{2\times 5}
4 نى -20 گە قوشۇڭ.
x=\frac{-\left(-2\right)±4i}{2\times 5}
-16 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±4i}{2\times 5}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±4i}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{2+4i}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±4i}{10} نى يېشىڭ. 2 نى 4i گە قوشۇڭ.
x=\frac{1}{5}+\frac{2}{5}i
2+4i نى 10 كە بۆلۈڭ.
x=\frac{2-4i}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±4i}{10} نى يېشىڭ. 2 دىن 4i نى ئېلىڭ.
x=\frac{1}{5}-\frac{2}{5}i
2-4i نى 10 كە بۆلۈڭ.
x=\frac{1}{5}+\frac{2}{5}i x=\frac{1}{5}-\frac{2}{5}i
تەڭلىمە يېشىلدى.
5x^{2}-2x+1=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
5x^{2}-2x+1-1=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
5x^{2}-2x=-1
1 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{5x^{2}-2x}{5}=-\frac{1}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}-\frac{2}{5}x=-\frac{1}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{1}{5}+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{1}{5}+\frac{1}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{5} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{4}{25}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{5} نى \frac{1}{25} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{5}\right)^{2}=-\frac{4}{25}
كۆپەيتكۈچى x^{2}-\frac{2}{5}x+\frac{1}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{4}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{5}=\frac{2}{5}i x-\frac{1}{5}=-\frac{2}{5}i
ئاددىيلاشتۇرۇڭ.
x=\frac{1}{5}+\frac{2}{5}i x=\frac{1}{5}-\frac{2}{5}i
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{5} نى قوشۇڭ.