x نى يېشىش
x=\frac{4}{5}=0.8
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x^{2}-8x=-\frac{16}{5}
ھەر ئىككى تەرەپتىن 8x نى ئېلىڭ.
5x^{2}-8x+\frac{16}{5}=0
\frac{16}{5} نى ھەر ئىككى تەرەپكە قوشۇڭ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times \frac{16}{5}}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، -8 نى b گە ۋە \frac{16}{5} نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times \frac{16}{5}}}{2\times 5}
-8 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-8\right)±\sqrt{64-20\times \frac{16}{5}}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 5}
-20 نى \frac{16}{5} كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 5}
64 نى -64 گە قوشۇڭ.
x=-\frac{-8}{2\times 5}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{8}{2\times 5}
-8 نىڭ قارشىسى 8 دۇر.
x=\frac{8}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{4}{5}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
5x^{2}-8x=-\frac{16}{5}
ھەر ئىككى تەرەپتىن 8x نى ئېلىڭ.
\frac{5x^{2}-8x}{5}=-\frac{\frac{16}{5}}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}-\frac{8}{5}x=-\frac{\frac{16}{5}}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{8}{5}x=-\frac{16}{25}
-\frac{16}{5} نى 5 كە بۆلۈڭ.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{16}{25}+\left(-\frac{4}{5}\right)^{2}
-\frac{8}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{4}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{4}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-16+16}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{4}{5} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{8}{5}x+\frac{16}{25}=0
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{16}{25} نى \frac{16}{25} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{4}{5}\right)^{2}=0
كۆپەيتكۈچى x^{2}-\frac{8}{5}x+\frac{16}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{0}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{4}{5}=0 x-\frac{4}{5}=0
ئاددىيلاشتۇرۇڭ.
x=\frac{4}{5} x=\frac{4}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{4}{5} نى قوشۇڭ.
x=\frac{4}{5}
تەڭلىمە يېشىلدى. يېشىش ئۇسۇلى ئوخشاش.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}