ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x^{2}+6x+2=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 2}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، 6 نى b گە ۋە 2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-6±\sqrt{36-4\times 5\times 2}}{2\times 5}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-20\times 2}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{36-40}}{2\times 5}
-20 نى 2 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{-4}}{2\times 5}
36 نى -40 گە قوشۇڭ.
x=\frac{-6±2i}{2\times 5}
-4 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±2i}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{-6+2i}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±2i}{10} نى يېشىڭ. -6 نى 2i گە قوشۇڭ.
x=-\frac{3}{5}+\frac{1}{5}i
-6+2i نى 10 كە بۆلۈڭ.
x=\frac{-6-2i}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±2i}{10} نى يېشىڭ. -6 دىن 2i نى ئېلىڭ.
x=-\frac{3}{5}-\frac{1}{5}i
-6-2i نى 10 كە بۆلۈڭ.
x=-\frac{3}{5}+\frac{1}{5}i x=-\frac{3}{5}-\frac{1}{5}i
تەڭلىمە يېشىلدى.
5x^{2}+6x+2=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
5x^{2}+6x+2-2=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
5x^{2}+6x=-2
2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{5x^{2}+6x}{5}=-\frac{2}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}+\frac{6}{5}x=-\frac{2}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-\frac{2}{5}+\left(\frac{3}{5}\right)^{2}
\frac{6}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{2}{5}+\frac{9}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{5} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{1}{25}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{2}{5} نى \frac{9}{25} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{3}{5}\right)^{2}=-\frac{1}{25}
كۆپەيتكۈچى x^{2}+\frac{6}{5}x+\frac{9}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{1}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{5}=\frac{1}{5}i x+\frac{3}{5}=-\frac{1}{5}i
ئاددىيلاشتۇرۇڭ.
x=-\frac{3}{5}+\frac{1}{5}i x=-\frac{3}{5}-\frac{1}{5}i
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{5} نى ئېلىڭ.