ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5\left(x^{2}+4x-12\right)
5 نى ئاجرىتىپ چىقىرىڭ.
a+b=4 ab=1\left(-12\right)=-12
x^{2}+4x-12 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-12 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,12 -2,6 -3,4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+12=11 -2+6=4 -3+4=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-2 b=6
4 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-2x\right)+\left(6x-12\right)
x^{2}+4x-12 نى \left(x^{2}-2x\right)+\left(6x-12\right) شەكلىدە قايتا يېزىڭ.
x\left(x-2\right)+6\left(x-2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 6 نى چىقىرىڭ.
\left(x-2\right)\left(x+6\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-2 نى چىقىرىڭ.
5\left(x-2\right)\left(x+6\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
5x^{2}+20x-60=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-60\right)}}{2\times 5}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-20±\sqrt{400-4\times 5\left(-60\right)}}{2\times 5}
20 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-20±\sqrt{400-20\left(-60\right)}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-20±\sqrt{400+1200}}{2\times 5}
-20 نى -60 كە كۆپەيتىڭ.
x=\frac{-20±\sqrt{1600}}{2\times 5}
400 نى 1200 گە قوشۇڭ.
x=\frac{-20±40}{2\times 5}
1600 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-20±40}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{20}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-20±40}{10} نى يېشىڭ. -20 نى 40 گە قوشۇڭ.
x=2
20 نى 10 كە بۆلۈڭ.
x=-\frac{60}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-20±40}{10} نى يېشىڭ. -20 دىن 40 نى ئېلىڭ.
x=-6
-60 نى 10 كە بۆلۈڭ.
5x^{2}+20x-60=5\left(x-2\right)\left(x-\left(-6\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 2 نى x_{1} گە ۋە -6 نى x_{2} گە ئالماشتۇرۇڭ.
5x^{2}+20x-60=5\left(x-2\right)\left(x+6\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.