p نى يېشىش
p = \frac{\sqrt{35}}{5} \approx 1.183215957
p = -\frac{\sqrt{35}}{5} \approx -1.183215957
p=-1
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5p^{3}+5p^{2}-7p-7=0
ھەر ئىككى تەرەپتىن 7 نى ئېلىڭ.
±\frac{7}{5},±7,±\frac{1}{5},±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -7 نى بۆلىدۇ، q باش كوئېففىتسېنت 5 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
p=-1
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
5p^{2}-7=0
كۆپەيتىش تېيورمىسى بويىچە، p-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. 5p^{3}+5p^{2}-7p-7 نى p+1 گە بۆلۈپ 5p^{2}-7 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
p=\frac{0±\sqrt{0^{2}-4\times 5\left(-7\right)}}{2\times 5}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 5 نى a گە، 0 نى b گە ۋە -7 نى c گە ئالماشتۇرۇڭ.
p=\frac{0±2\sqrt{35}}{10}
ھېسابلاڭ.
p=-\frac{\sqrt{35}}{5} p=\frac{\sqrt{35}}{5}
5p^{2}-7=0 دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
p=-1 p=-\frac{\sqrt{35}}{5} p=\frac{\sqrt{35}}{5}
بارلىق يېشىمنى تىزىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}