b نى يېشىش (complex solution)
\left\{\begin{matrix}b=\frac{mn+p}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&p=-mn\text{ and }x=0\end{matrix}\right.
m نى يېشىش (complex solution)
\left\{\begin{matrix}m=\frac{bx^{2}-p}{n}\text{, }&n\neq 0\\m\in \mathrm{C}\text{, }&p=bx^{2}\text{ and }n=0\end{matrix}\right.
b نى يېشىش
\left\{\begin{matrix}b=\frac{mn+p}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&p=-mn\text{ and }x=0\end{matrix}\right.
m نى يېشىش
\left\{\begin{matrix}m=\frac{bx^{2}-p}{n}\text{, }&n\neq 0\\m\in \mathrm{R}\text{, }&p=bx^{2}\text{ and }n=0\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5bx^{2}-mn-4bx^{2}=p
ھەر ئىككى تەرەپتىن 4bx^{2} نى ئېلىڭ.
bx^{2}-mn=p
5bx^{2} بىلەن -4bx^{2} نى بىرىكتۈرۈپ bx^{2} نى چىقىرىڭ.
bx^{2}=p+mn
mn نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}b=mn+p
تەڭلىمە ئۆلچەملىك بولدى.
\frac{x^{2}b}{x^{2}}=\frac{mn+p}{x^{2}}
ھەر ئىككى تەرەپنى x^{2} گە بۆلۈڭ.
b=\frac{mn+p}{x^{2}}
x^{2} گە بۆلگەندە x^{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
-mn=p+4bx^{2}-5bx^{2}
ھەر ئىككى تەرەپتىن 5bx^{2} نى ئېلىڭ.
-mn=p-bx^{2}
4bx^{2} بىلەن -5bx^{2} نى بىرىكتۈرۈپ -bx^{2} نى چىقىرىڭ.
\left(-n\right)m=p-bx^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-n\right)m}{-n}=\frac{p-bx^{2}}{-n}
ھەر ئىككى تەرەپنى -n گە بۆلۈڭ.
m=\frac{p-bx^{2}}{-n}
-n گە بۆلگەندە -n گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
m=-\frac{p-bx^{2}}{n}
p-bx^{2} نى -n كە بۆلۈڭ.
5bx^{2}-mn-4bx^{2}=p
ھەر ئىككى تەرەپتىن 4bx^{2} نى ئېلىڭ.
bx^{2}-mn=p
5bx^{2} بىلەن -4bx^{2} نى بىرىكتۈرۈپ bx^{2} نى چىقىرىڭ.
bx^{2}=p+mn
mn نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}b=mn+p
تەڭلىمە ئۆلچەملىك بولدى.
\frac{x^{2}b}{x^{2}}=\frac{mn+p}{x^{2}}
ھەر ئىككى تەرەپنى x^{2} گە بۆلۈڭ.
b=\frac{mn+p}{x^{2}}
x^{2} گە بۆلگەندە x^{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
-mn=p+4bx^{2}-5bx^{2}
ھەر ئىككى تەرەپتىن 5bx^{2} نى ئېلىڭ.
-mn=p-bx^{2}
4bx^{2} بىلەن -5bx^{2} نى بىرىكتۈرۈپ -bx^{2} نى چىقىرىڭ.
\left(-n\right)m=p-bx^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-n\right)m}{-n}=\frac{p-bx^{2}}{-n}
ھەر ئىككى تەرەپنى -n گە بۆلۈڭ.
m=\frac{p-bx^{2}}{-n}
-n گە بۆلگەندە -n گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
m=-\frac{p-bx^{2}}{n}
p-bx^{2} نى -n كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}