x نى يېشىش
x=-1
x=\frac{2}{5}=0.4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=3 ab=5\left(-2\right)=-10
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 5x^{2}+ax+bx-2 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,10 -2,5
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -10 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+10=9 -2+5=3
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-2 b=5
3 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(5x^{2}-2x\right)+\left(5x-2\right)
5x^{2}+3x-2 نى \left(5x^{2}-2x\right)+\left(5x-2\right) شەكلىدە قايتا يېزىڭ.
x\left(5x-2\right)+5x-2
5x^{2}-2x دىن x نى چىقىرىڭ.
\left(5x-2\right)\left(x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 5x-2 نى چىقىرىڭ.
x=\frac{2}{5} x=-1
تەڭلىمىنى يېشىش ئۈچۈن 5x-2=0 بىلەن x+1=0 نى يېشىڭ.
5x^{2}+3x-2=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، 3 نى b گە ۋە -2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-3±\sqrt{9+40}}{2\times 5}
-20 نى -2 كە كۆپەيتىڭ.
x=\frac{-3±\sqrt{49}}{2\times 5}
9 نى 40 گە قوشۇڭ.
x=\frac{-3±7}{2\times 5}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-3±7}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{4}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-3±7}{10} نى يېشىڭ. -3 نى 7 گە قوشۇڭ.
x=\frac{2}{5}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{4}{10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{10}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-3±7}{10} نى يېشىڭ. -3 دىن 7 نى ئېلىڭ.
x=-1
-10 نى 10 كە بۆلۈڭ.
x=\frac{2}{5} x=-1
تەڭلىمە يېشىلدى.
5x^{2}+3x-2=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
5x^{2}+3x-2-\left(-2\right)=-\left(-2\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
5x^{2}+3x=-\left(-2\right)
-2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
5x^{2}+3x=2
0 دىن -2 نى ئېلىڭ.
\frac{5x^{2}+3x}{5}=\frac{2}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}+\frac{3}{5}x=\frac{2}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(\frac{3}{10}\right)^{2}
\frac{3}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{10} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{10} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{10} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{5} نى \frac{9}{100} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{3}{10}\right)^{2}=\frac{49}{100}
كۆپەيتكۈچى x^{2}+\frac{3}{5}x+\frac{9}{100}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{10}=\frac{7}{10} x+\frac{3}{10}=-\frac{7}{10}
ئاددىيلاشتۇرۇڭ.
x=\frac{2}{5} x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{10} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}