ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=26 ab=5\left(-24\right)=-120
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 5x^{2}+ax+bx-24 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -120 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=30
26 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(5x^{2}-4x\right)+\left(30x-24\right)
5x^{2}+26x-24 نى \left(5x^{2}-4x\right)+\left(30x-24\right) شەكلىدە قايتا يېزىڭ.
x\left(5x-4\right)+6\left(5x-4\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 6 نى چىقىرىڭ.
\left(5x-4\right)\left(x+6\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 5x-4 نى چىقىرىڭ.
x=\frac{4}{5} x=-6
تەڭلىمىنى يېشىش ئۈچۈن 5x-4=0 بىلەن x+6=0 نى يېشىڭ.
5x^{2}+26x-24=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-26±\sqrt{26^{2}-4\times 5\left(-24\right)}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، 26 نى b گە ۋە -24 نى c گە ئالماشتۇرۇڭ.
x=\frac{-26±\sqrt{676-4\times 5\left(-24\right)}}{2\times 5}
26 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-26±\sqrt{676-20\left(-24\right)}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-26±\sqrt{676+480}}{2\times 5}
-20 نى -24 كە كۆپەيتىڭ.
x=\frac{-26±\sqrt{1156}}{2\times 5}
676 نى 480 گە قوشۇڭ.
x=\frac{-26±34}{2\times 5}
1156 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-26±34}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{8}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-26±34}{10} نى يېشىڭ. -26 نى 34 گە قوشۇڭ.
x=\frac{4}{5}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{60}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-26±34}{10} نى يېشىڭ. -26 دىن 34 نى ئېلىڭ.
x=-6
-60 نى 10 كە بۆلۈڭ.
x=\frac{4}{5} x=-6
تەڭلىمە يېشىلدى.
5x^{2}+26x-24=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
5x^{2}+26x-24-\left(-24\right)=-\left(-24\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 24 نى قوشۇڭ.
5x^{2}+26x=-\left(-24\right)
-24 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
5x^{2}+26x=24
0 دىن -24 نى ئېلىڭ.
\frac{5x^{2}+26x}{5}=\frac{24}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}+\frac{26}{5}x=\frac{24}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{26}{5}x+\left(\frac{13}{5}\right)^{2}=\frac{24}{5}+\left(\frac{13}{5}\right)^{2}
\frac{26}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{13}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{13}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{26}{5}x+\frac{169}{25}=\frac{24}{5}+\frac{169}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{13}{5} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{26}{5}x+\frac{169}{25}=\frac{289}{25}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{24}{5} نى \frac{169}{25} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{13}{5}\right)^{2}=\frac{289}{25}
كۆپەيتكۈچى x^{2}+\frac{26}{5}x+\frac{169}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{13}{5}\right)^{2}}=\sqrt{\frac{289}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{13}{5}=\frac{17}{5} x+\frac{13}{5}=-\frac{17}{5}
ئاددىيلاشتۇرۇڭ.
x=\frac{4}{5} x=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{13}{5} نى ئېلىڭ.