ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5^{2x+2}=\frac{1}{625}
دەرىجە كۆرسەتكۈچى ۋە لوگارىفما قائىدىلىرى ئارقىلىق تەڭلىمىنى يېشىڭ.
\log(5^{2x+2})=\log(\frac{1}{625})
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ لوگارىفمىسىنى چىقىرىڭ.
\left(2x+2\right)\log(5)=\log(\frac{1}{625})
دەرىجىگە كۆتۈرۈلگەن ساننىڭ لوگارىفمىسى شۇ ساننىڭ لوگارىفمىسىنى ھەسسىلەيدىغان دەرىجىدۇر.
2x+2=\frac{\log(\frac{1}{625})}{\log(5)}
ھەر ئىككى تەرەپنى \log(5) گە بۆلۈڭ.
2x+2=\log_{5}\left(\frac{1}{625}\right)
ئاساسىي فورمۇلا \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) نىڭ ئۆزگىرىش ئارقىلىق.
2x=-4-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
x=-\frac{6}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.