ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-1 ab=4\left(-5\right)=-20
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx-5 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-20 2,-10 4,-5
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -20 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-20=-19 2-10=-8 4-5=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=4
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-5x\right)+\left(4x-5\right)
4x^{2}-x-5 نى \left(4x^{2}-5x\right)+\left(4x-5\right) شەكلىدە قايتا يېزىڭ.
x\left(4x-5\right)+4x-5
4x^{2}-5x دىن x نى چىقىرىڭ.
\left(4x-5\right)\left(x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 4x-5 نى چىقىرىڭ.
x=\frac{5}{4} x=-1
تەڭلىمىنى يېشىش ئۈچۈن 4x-5=0 بىلەن x+1=0 نى يېشىڭ.
4x^{2}-x-5=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-5\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -1 نى b گە ۋە -5 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-5\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 4}
-16 نى -5 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{81}}{2\times 4}
1 نى 80 گە قوشۇڭ.
x=\frac{-\left(-1\right)±9}{2\times 4}
81 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±9}{2\times 4}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{1±9}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{10}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±9}{8} نى يېشىڭ. 1 نى 9 گە قوشۇڭ.
x=\frac{5}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{10}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{8}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±9}{8} نى يېشىڭ. 1 دىن 9 نى ئېلىڭ.
x=-1
-8 نى 8 كە بۆلۈڭ.
x=\frac{5}{4} x=-1
تەڭلىمە يېشىلدى.
4x^{2}-x-5=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-x-5-\left(-5\right)=-\left(-5\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
4x^{2}-x=-\left(-5\right)
-5 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
4x^{2}-x=5
0 دىن -5 نى ئېلىڭ.
\frac{4x^{2}-x}{4}=\frac{5}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}-\frac{1}{4}x=\frac{5}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{8}\right)^{2}
-\frac{1}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{5}{4}+\frac{1}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{81}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{4} نى \frac{1}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{8}\right)^{2}=\frac{81}{64}
كۆپەيتكۈچى x^{2}-\frac{1}{4}x+\frac{1}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{8}=\frac{9}{8} x-\frac{1}{8}=-\frac{9}{8}
ئاددىيلاشتۇرۇڭ.
x=\frac{5}{4} x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{8} نى قوشۇڭ.