x نى يېشىش
x=-\frac{3}{4}=-0.75
x=3
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-9 ab=4\left(-9\right)=-36
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx-9 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-36 2,-18 3,-12 4,-9 6,-6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -36 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-12 b=3
-9 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-12x\right)+\left(3x-9\right)
4x^{2}-9x-9 نى \left(4x^{2}-12x\right)+\left(3x-9\right) شەكلىدە قايتا يېزىڭ.
4x\left(x-3\right)+3\left(x-3\right)
بىرىنچى گۇرۇپپىدىن 4x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(x-3\right)\left(4x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-3 نى چىقىرىڭ.
x=3 x=-\frac{3}{4}
تەڭلىمىنى يېشىش ئۈچۈن x-3=0 بىلەن 4x+3=0 نى يېشىڭ.
4x^{2}-9x-9=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -9 نى b گە ۋە -9 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-9\right)}}{2\times 4}
-9 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-9\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-9\right)±\sqrt{81+144}}{2\times 4}
-16 نى -9 كە كۆپەيتىڭ.
x=\frac{-\left(-9\right)±\sqrt{225}}{2\times 4}
81 نى 144 گە قوشۇڭ.
x=\frac{-\left(-9\right)±15}{2\times 4}
225 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{9±15}{2\times 4}
-9 نىڭ قارشىسى 9 دۇر.
x=\frac{9±15}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{24}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{9±15}{8} نى يېشىڭ. 9 نى 15 گە قوشۇڭ.
x=3
24 نى 8 كە بۆلۈڭ.
x=-\frac{6}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{9±15}{8} نى يېشىڭ. 9 دىن 15 نى ئېلىڭ.
x=-\frac{3}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-6}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=3 x=-\frac{3}{4}
تەڭلىمە يېشىلدى.
4x^{2}-9x-9=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-9x-9-\left(-9\right)=-\left(-9\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 9 نى قوشۇڭ.
4x^{2}-9x=-\left(-9\right)
-9 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
4x^{2}-9x=9
0 دىن -9 نى ئېلىڭ.
\frac{4x^{2}-9x}{4}=\frac{9}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}-\frac{9}{4}x=\frac{9}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=\frac{9}{4}+\left(-\frac{9}{8}\right)^{2}
-\frac{9}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{9}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{9}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{9}{4}+\frac{81}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{9}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{225}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{4} نى \frac{81}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{9}{8}\right)^{2}=\frac{225}{64}
كۆپەيتكۈچى x^{2}-\frac{9}{4}x+\frac{81}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{9}{8}=\frac{15}{8} x-\frac{9}{8}=-\frac{15}{8}
ئاددىيلاشتۇرۇڭ.
x=3 x=-\frac{3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{9}{8} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}