x نى يېشىش
x=-\frac{1}{2}=-0.5
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-8 ab=4\left(-5\right)=-20
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx-5 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-20 2,-10 4,-5
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -20 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-20=-19 2-10=-8 4-5=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-10 b=2
-8 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-10x\right)+\left(2x-5\right)
4x^{2}-8x-5 نى \left(4x^{2}-10x\right)+\left(2x-5\right) شەكلىدە قايتا يېزىڭ.
2x\left(2x-5\right)+2x-5
4x^{2}-10x دىن 2x نى چىقىرىڭ.
\left(2x-5\right)\left(2x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-5 نى چىقىرىڭ.
x=\frac{5}{2} x=-\frac{1}{2}
تەڭلىمىنى يېشىش ئۈچۈن 2x-5=0 بىلەن 2x+1=0 نى يېشىڭ.
4x^{2}-8x-5=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -8 نى b گە ۋە -5 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-5\right)}}{2\times 4}
-8 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-5\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 4}
-16 نى -5 كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 4}
64 نى 80 گە قوشۇڭ.
x=\frac{-\left(-8\right)±12}{2\times 4}
144 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{8±12}{2\times 4}
-8 نىڭ قارشىسى 8 دۇر.
x=\frac{8±12}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{20}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{8±12}{8} نى يېشىڭ. 8 نى 12 گە قوشۇڭ.
x=\frac{5}{2}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{20}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{4}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{8±12}{8} نى يېشىڭ. 8 دىن 12 نى ئېلىڭ.
x=-\frac{1}{2}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-4}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{5}{2} x=-\frac{1}{2}
تەڭلىمە يېشىلدى.
4x^{2}-8x-5=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-8x-5-\left(-5\right)=-\left(-5\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
4x^{2}-8x=-\left(-5\right)
-5 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
4x^{2}-8x=5
0 دىن -5 نى ئېلىڭ.
\frac{4x^{2}-8x}{4}=\frac{5}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\left(-\frac{8}{4}\right)x=\frac{5}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-2x=\frac{5}{4}
-8 نى 4 كە بۆلۈڭ.
x^{2}-2x+1=\frac{5}{4}+1
-2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-2x+1=\frac{9}{4}
\frac{5}{4} نى 1 گە قوشۇڭ.
\left(x-1\right)^{2}=\frac{9}{4}
كۆپەيتكۈچى x^{2}-2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-1=\frac{3}{2} x-1=-\frac{3}{2}
ئاددىيلاشتۇرۇڭ.
x=\frac{5}{2} x=-\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}