ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{2}-7x-1=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -7 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-1\right)}}{2\times 4}
-7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-7\right)±\sqrt{49-16\left(-1\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-7\right)±\sqrt{49+16}}{2\times 4}
-16 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-7\right)±\sqrt{65}}{2\times 4}
49 نى 16 گە قوشۇڭ.
x=\frac{7±\sqrt{65}}{2\times 4}
-7 نىڭ قارشىسى 7 دۇر.
x=\frac{7±\sqrt{65}}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{\sqrt{65}+7}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{7±\sqrt{65}}{8} نى يېشىڭ. 7 نى \sqrt{65} گە قوشۇڭ.
x=\frac{7-\sqrt{65}}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{7±\sqrt{65}}{8} نى يېشىڭ. 7 دىن \sqrt{65} نى ئېلىڭ.
x=\frac{\sqrt{65}+7}{8} x=\frac{7-\sqrt{65}}{8}
تەڭلىمە يېشىلدى.
4x^{2}-7x-1=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-7x-1-\left(-1\right)=-\left(-1\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
4x^{2}-7x=-\left(-1\right)
-1 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
4x^{2}-7x=1
0 دىن -1 نى ئېلىڭ.
\frac{4x^{2}-7x}{4}=\frac{1}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}-\frac{7}{4}x=\frac{1}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{7}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{7}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{1}{4}+\frac{49}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{7}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{65}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{49}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{7}{8}\right)^{2}=\frac{65}{64}
كۆپەيتكۈچى x^{2}-\frac{7}{4}x+\frac{49}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{65}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{7}{8}=\frac{\sqrt{65}}{8} x-\frac{7}{8}=-\frac{\sqrt{65}}{8}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{65}+7}{8} x=\frac{7-\sqrt{65}}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{8} نى قوشۇڭ.