ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-7 ab=4\times 3=12
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx+3 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-12 -2,-6 -3,-4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-12=-13 -2-6=-8 -3-4=-7
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=-3
-7 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-4x\right)+\left(-3x+3\right)
4x^{2}-7x+3 نى \left(4x^{2}-4x\right)+\left(-3x+3\right) شەكلىدە قايتا يېزىڭ.
4x\left(x-1\right)-3\left(x-1\right)
بىرىنچى گۇرۇپپىدىن 4x نى، ئىككىنچى گۇرۇپپىدىن -3 نى چىقىرىڭ.
\left(x-1\right)\left(4x-3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=\frac{3}{4}
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن 4x-3=0 نى يېشىڭ.
4x^{2}-7x+3=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\times 3}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -7 نى b گە ۋە 3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\times 3}}{2\times 4}
-7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-7\right)±\sqrt{49-16\times 3}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 4}
-16 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 4}
49 نى -48 گە قوشۇڭ.
x=\frac{-\left(-7\right)±1}{2\times 4}
1 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{7±1}{2\times 4}
-7 نىڭ قارشىسى 7 دۇر.
x=\frac{7±1}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{8}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{7±1}{8} نى يېشىڭ. 7 نى 1 گە قوشۇڭ.
x=1
8 نى 8 كە بۆلۈڭ.
x=\frac{6}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{7±1}{8} نى يېشىڭ. 7 دىن 1 نى ئېلىڭ.
x=\frac{3}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=1 x=\frac{3}{4}
تەڭلىمە يېشىلدى.
4x^{2}-7x+3=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-7x+3-3=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
4x^{2}-7x=-3
3 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{4x^{2}-7x}{4}=-\frac{3}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}-\frac{7}{4}x=-\frac{3}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=-\frac{3}{4}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{7}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{7}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=-\frac{3}{4}+\frac{49}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{7}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{1}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{3}{4} نى \frac{49}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{7}{8}\right)^{2}=\frac{1}{64}
كۆپەيتكۈچى x^{2}-\frac{7}{4}x+\frac{49}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{7}{8}=\frac{1}{8} x-\frac{7}{8}=-\frac{1}{8}
ئاددىيلاشتۇرۇڭ.
x=1 x=\frac{3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{8} نى قوشۇڭ.