g نى يېشىش
g=\frac{x^{2}}{6}-\frac{5x}{6}+\frac{97}{24}
x نى يېشىش (complex solution)
x=\sqrt{6g-18}+\frac{5}{2}
x=-\sqrt{6g-18}+\frac{5}{2}
x نى يېشىش
x=\sqrt{6g-18}+\frac{5}{2}
x=-\sqrt{6g-18}+\frac{5}{2}\text{, }g\geq 3
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-20x-24g+97=-4x^{2}
ھەر ئىككى تەرەپتىن 4x^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
-24g+97=-4x^{2}+20x
20x نى ھەر ئىككى تەرەپكە قوشۇڭ.
-24g=-4x^{2}+20x-97
ھەر ئىككى تەرەپتىن 97 نى ئېلىڭ.
\frac{-24g}{-24}=\frac{-4x^{2}+20x-97}{-24}
ھەر ئىككى تەرەپنى -24 گە بۆلۈڭ.
g=\frac{-4x^{2}+20x-97}{-24}
-24 گە بۆلگەندە -24 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
g=\frac{x^{2}}{6}-\frac{5x}{6}+\frac{97}{24}
-4x^{2}+20x-97 نى -24 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}