ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{2}-3x=1
ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
4x^{2}-3x-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
a+b=-3 ab=4\left(-1\right)=-4
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx-1 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-4 2,-2
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -4 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-4=-3 2-2=0
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=1
-3 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-4x\right)+\left(x-1\right)
4x^{2}-3x-1 نى \left(4x^{2}-4x\right)+\left(x-1\right) شەكلىدە قايتا يېزىڭ.
4x\left(x-1\right)+x-1
4x^{2}-4x دىن 4x نى چىقىرىڭ.
\left(x-1\right)\left(4x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=-\frac{1}{4}
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن 4x+1=0 نى يېشىڭ.
4x^{2}-3x=1
ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
4x^{2}-3x-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -3 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-1\right)}}{2\times 4}
-3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-16\left(-1\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\times 4}
-16 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\times 4}
9 نى 16 گە قوشۇڭ.
x=\frac{-\left(-3\right)±5}{2\times 4}
25 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{3±5}{2\times 4}
-3 نىڭ قارشىسى 3 دۇر.
x=\frac{3±5}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{8}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{3±5}{8} نى يېشىڭ. 3 نى 5 گە قوشۇڭ.
x=1
8 نى 8 كە بۆلۈڭ.
x=-\frac{2}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{3±5}{8} نى يېشىڭ. 3 دىن 5 نى ئېلىڭ.
x=-\frac{1}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=1 x=-\frac{1}{4}
تەڭلىمە يېشىلدى.
4x^{2}-3x=1
ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
\frac{4x^{2}-3x}{4}=\frac{1}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}-\frac{3}{4}x=\frac{1}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{25}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{9}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{3}{8}\right)^{2}=\frac{25}{64}
كۆپەيتكۈچى x^{2}-\frac{3}{4}x+\frac{9}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{8}=\frac{5}{8} x-\frac{3}{8}=-\frac{5}{8}
ئاددىيلاشتۇرۇڭ.
x=1 x=-\frac{1}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{8} نى قوشۇڭ.