x نى يېشىش
x=\frac{\sqrt{41}-3}{4}\approx 0.850781059
x=\frac{-\sqrt{41}-3}{4}\approx -2.350781059
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x^{2}+7x-8-x=0
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
4x^{2}+6x-8=0
7x بىلەن -x نى بىرىكتۈرۈپ 6x نى چىقىرىڭ.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-8\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، 6 نى b گە ۋە -8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-6±\sqrt{36-4\times 4\left(-8\right)}}{2\times 4}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-16\left(-8\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{36+128}}{2\times 4}
-16 نى -8 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{164}}{2\times 4}
36 نى 128 گە قوشۇڭ.
x=\frac{-6±2\sqrt{41}}{2\times 4}
164 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±2\sqrt{41}}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{2\sqrt{41}-6}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±2\sqrt{41}}{8} نى يېشىڭ. -6 نى 2\sqrt{41} گە قوشۇڭ.
x=\frac{\sqrt{41}-3}{4}
-6+2\sqrt{41} نى 8 كە بۆلۈڭ.
x=\frac{-2\sqrt{41}-6}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±2\sqrt{41}}{8} نى يېشىڭ. -6 دىن 2\sqrt{41} نى ئېلىڭ.
x=\frac{-\sqrt{41}-3}{4}
-6-2\sqrt{41} نى 8 كە بۆلۈڭ.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
تەڭلىمە يېشىلدى.
4x^{2}+7x-8-x=0
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
4x^{2}+6x-8=0
7x بىلەن -x نى بىرىكتۈرۈپ 6x نى چىقىرىڭ.
4x^{2}+6x=8
8 نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
\frac{4x^{2}+6x}{4}=\frac{8}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\frac{6}{4}x=\frac{8}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{3}{2}x=\frac{8}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{3}{2}x=2
8 نى 4 كە بۆلۈڭ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
2 نى \frac{9}{16} گە قوشۇڭ.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
كۆپەيتكۈچى x^{2}+\frac{3}{2}x+\frac{9}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{4} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}