ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{2}+7x=1
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
4x^{2}+7x-1=1-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
4x^{2}+7x-1=0
1 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-1\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، 7 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-7±\sqrt{49-4\times 4\left(-1\right)}}{2\times 4}
7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-7±\sqrt{49-16\left(-1\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{49+16}}{2\times 4}
-16 نى -1 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{65}}{2\times 4}
49 نى 16 گە قوشۇڭ.
x=\frac{-7±\sqrt{65}}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{\sqrt{65}-7}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-7±\sqrt{65}}{8} نى يېشىڭ. -7 نى \sqrt{65} گە قوشۇڭ.
x=\frac{-\sqrt{65}-7}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-7±\sqrt{65}}{8} نى يېشىڭ. -7 دىن \sqrt{65} نى ئېلىڭ.
x=\frac{\sqrt{65}-7}{8} x=\frac{-\sqrt{65}-7}{8}
تەڭلىمە يېشىلدى.
4x^{2}+7x=1
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{4x^{2}+7x}{4}=\frac{1}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\frac{7}{4}x=\frac{1}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{1}{4}+\left(\frac{7}{8}\right)^{2}
\frac{7}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{7}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{1}{4}+\frac{49}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{7}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{65}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{49}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{7}{8}\right)^{2}=\frac{65}{64}
كۆپەيتكۈچى x^{2}+\frac{7}{4}x+\frac{49}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{65}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{7}{8}=\frac{\sqrt{65}}{8} x+\frac{7}{8}=-\frac{\sqrt{65}}{8}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{65}-7}{8} x=\frac{-\sqrt{65}-7}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{7}{8} نى ئېلىڭ.