كۆپەيتكۈچى
2\left(2x-5\right)\left(x+4\right)
ھېسابلاش
2\left(2x-5\right)\left(x+4\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2\left(2x^{2}+3x-20\right)
2 نى ئاجرىتىپ چىقىرىڭ.
a+b=3 ab=2\left(-20\right)=-40
2x^{2}+3x-20 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 2x^{2}+ax+bx-20 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,40 -2,20 -4,10 -5,8
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -40 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=8
3 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(2x^{2}-5x\right)+\left(8x-20\right)
2x^{2}+3x-20 نى \left(2x^{2}-5x\right)+\left(8x-20\right) شەكلىدە قايتا يېزىڭ.
x\left(2x-5\right)+4\left(2x-5\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 4 نى چىقىرىڭ.
\left(2x-5\right)\left(x+4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-5 نى چىقىرىڭ.
2\left(2x-5\right)\left(x+4\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
4x^{2}+6x-40=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-40\right)}}{2\times 4}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{36-4\times 4\left(-40\right)}}{2\times 4}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-16\left(-40\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{36+640}}{2\times 4}
-16 نى -40 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{676}}{2\times 4}
36 نى 640 گە قوشۇڭ.
x=\frac{-6±26}{2\times 4}
676 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±26}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{20}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±26}{8} نى يېشىڭ. -6 نى 26 گە قوشۇڭ.
x=\frac{5}{2}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{20}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{32}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±26}{8} نى يېشىڭ. -6 دىن 26 نى ئېلىڭ.
x=-4
-32 نى 8 كە بۆلۈڭ.
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x-\left(-4\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{5}{2} نى x_{1} گە ۋە -4 نى x_{2} گە ئالماشتۇرۇڭ.
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x+4\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
4x^{2}+6x-40=4\times \frac{2x-5}{2}\left(x+4\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{5}{2} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
4x^{2}+6x-40=2\left(2x-5\right)\left(x+4\right)
4 بىلەن 2 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 2 نى يېيىشتۈرۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}