ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=20 ab=4\times 25=100
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 4x^{2}+ax+bx+25 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,100 2,50 4,25 5,20 10,10
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 100 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=10 b=10
20 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}+10x\right)+\left(10x+25\right)
4x^{2}+20x+25 نى \left(4x^{2}+10x\right)+\left(10x+25\right) شەكلىدە قايتا يېزىڭ.
2x\left(2x+5\right)+5\left(2x+5\right)
بىرىنچى گۇرۇپپىدىن 2x نى، ئىككىنچى گۇرۇپپىدىن 5 نى چىقىرىڭ.
\left(2x+5\right)\left(2x+5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x+5 نى چىقىرىڭ.
\left(2x+5\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(4x^{2}+20x+25)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(4,20,25)=1
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
\sqrt{4x^{2}}=2x
باش ئەزا 4x^{2} نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\sqrt{25}=5
ئاياغ ئەزا 25 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(2x+5\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
4x^{2}+20x+25=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-20±\sqrt{20^{2}-4\times 4\times 25}}{2\times 4}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-20±\sqrt{400-4\times 4\times 25}}{2\times 4}
20 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-20±\sqrt{400-16\times 25}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-20±\sqrt{400-400}}{2\times 4}
-16 نى 25 كە كۆپەيتىڭ.
x=\frac{-20±\sqrt{0}}{2\times 4}
400 نى -400 گە قوشۇڭ.
x=\frac{-20±0}{2\times 4}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-20±0}{8}
2 نى 4 كە كۆپەيتىڭ.
4x^{2}+20x+25=4\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -\frac{5}{2} نى x_{1} گە ۋە -\frac{5}{2} نى x_{2} گە ئالماشتۇرۇڭ.
4x^{2}+20x+25=4\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
4x^{2}+20x+25=4\times \frac{2x+5}{2}\left(x+\frac{5}{2}\right)
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
4x^{2}+20x+25=4\times \frac{2x+5}{2}\times \frac{2x+5}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
4x^{2}+20x+25=4\times \frac{\left(2x+5\right)\left(2x+5\right)}{2\times 2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{2x+5}{2} نى \frac{2x+5}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
4x^{2}+20x+25=4\times \frac{\left(2x+5\right)\left(2x+5\right)}{4}
2 نى 2 كە كۆپەيتىڭ.
4x^{2}+20x+25=\left(2x+5\right)\left(2x+5\right)
4 بىلەن 4 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 4 نى يېيىشتۈرۈڭ.