ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{4}+4=5x^{2}
تارقىتىش قانۇنى بويىچە 4 نى x^{4}+1 گە كۆپەيتىڭ.
4x^{4}+4-5x^{2}=0
ھەر ئىككى تەرەپتىن 5x^{2} نى ئېلىڭ.
4t^{2}-5t+4=0
t نى x^{2} گە ئالماشتۇرۇڭ.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 4}}{2\times 4}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 4 نى a گە، -5 نى b گە ۋە 4 نى c گە ئالماشتۇرۇڭ.
t=\frac{5±\sqrt{-39}}{8}
ھېسابلاڭ.
t=\frac{5+\sqrt{39}i}{8} t=\frac{-\sqrt{39}i+5}{8}
t=\frac{5±\sqrt{-39}}{8} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}} x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}
x=t^{2} بولغاچقا ھەر t نى x=±\sqrt{t} دەرىجە كۆتۈرۈش ئارقىلىق يېشىلىدۇ.