x نى يېشىش (complex solution)
x=\frac{\sqrt{3}i\sqrt[3]{6049+18\sqrt{32270}i}}{12}-\frac{361\sqrt{3}i\left(6049+18\sqrt{32270}i\right)^{-\frac{1}{3}}}{12}-\frac{\sqrt[3]{6049+18\sqrt{32270}i}}{12}-\frac{361\left(6049+18\sqrt{32270}i\right)^{-\frac{1}{3}}}{12}+\frac{37}{6}\approx 2.148793097-3.330669074 \cdot 10^{-16}i
x=\frac{\sqrt[3]{6049+18\sqrt{32270}i}+361\left(6049+18\sqrt{32270}i\right)^{-\frac{1}{3}}+37}{6}\approx 12.415397352-1.480297366 \cdot 10^{-16}i
x=-\frac{\sqrt{3}i\sqrt[3]{6049+18\sqrt{32270}i}}{12}+\frac{361\sqrt{3}i\left(6049+18\sqrt{32270}i\right)^{-\frac{1}{3}}}{12}-\frac{\sqrt[3]{6049+18\sqrt{32270}i}}{12}-\frac{361\left(6049+18\sqrt{32270}i\right)^{-\frac{1}{3}}}{12}+\frac{37}{6}\approx 3.935809551+5.551115123 \cdot 10^{-16}i
x نى يېشىش
x=\frac{-19\sqrt{3}\sin(\frac{\arccos(\frac{6049}{6859})}{3})-19\cos(\frac{\arccos(\frac{6049}{6859})}{3})+37}{6}\approx 2.148793097
x=\frac{38\cos(\frac{\arccos(\frac{6049}{6859})}{3})+37}{6}\approx 12.415397352
x=\frac{19\sqrt{3}\sin(\frac{\arccos(\frac{6049}{6859})}{3})-19\cos(\frac{\arccos(\frac{6049}{6859})}{3})+37}{6}\approx 3.935809551
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}