ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-12 ab=4\left(-7\right)=-28
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 4x^{2}+ax+bx-7 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-28 2,-14 4,-7
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -28 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-28=-27 2-14=-12 4-7=-3
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-14 b=2
-12 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(4x^{2}-14x\right)+\left(2x-7\right)
4x^{2}-12x-7 نى \left(4x^{2}-14x\right)+\left(2x-7\right) شەكلىدە قايتا يېزىڭ.
2x\left(2x-7\right)+2x-7
4x^{2}-14x دىن 2x نى چىقىرىڭ.
\left(2x-7\right)\left(2x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-7 نى چىقىرىڭ.
x=\frac{7}{2} x=-\frac{1}{2}
تەڭلىمىنى يېشىش ئۈچۈن 2x-7=0 بىلەن 2x+1=0 نى يېشىڭ.
4x^{2}-12x-7=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-7\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -12 نى b گە ۋە -7 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-7\right)}}{2\times 4}
-12 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-7\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-12\right)±\sqrt{144+112}}{2\times 4}
-16 نى -7 كە كۆپەيتىڭ.
x=\frac{-\left(-12\right)±\sqrt{256}}{2\times 4}
144 نى 112 گە قوشۇڭ.
x=\frac{-\left(-12\right)±16}{2\times 4}
256 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{12±16}{2\times 4}
-12 نىڭ قارشىسى 12 دۇر.
x=\frac{12±16}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{28}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{12±16}{8} نى يېشىڭ. 12 نى 16 گە قوشۇڭ.
x=\frac{7}{2}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{28}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{4}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{12±16}{8} نى يېشىڭ. 12 دىن 16 نى ئېلىڭ.
x=-\frac{1}{2}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-4}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{7}{2} x=-\frac{1}{2}
تەڭلىمە يېشىلدى.
4x^{2}-12x-7=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
4x^{2}-12x-7-\left(-7\right)=-\left(-7\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7 نى قوشۇڭ.
4x^{2}-12x=-\left(-7\right)
-7 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
4x^{2}-12x=7
0 دىن -7 نى ئېلىڭ.
\frac{4x^{2}-12x}{4}=\frac{7}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{7}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-3x=\frac{7}{4}
-12 نى 4 كە بۆلۈڭ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(-\frac{3}{2}\right)^{2}
-3، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-3x+\frac{9}{4}=\frac{7+9}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-3x+\frac{9}{4}=4
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{7}{4} نى \frac{9}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{3}{2}\right)^{2}=4
كۆپەيتكۈچى x^{2}-3x+\frac{9}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{2}=2 x-\frac{3}{2}=-2
ئاددىيلاشتۇرۇڭ.
x=\frac{7}{2} x=-\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{2} نى قوشۇڭ.