x نى يېشىش
x=-\frac{3\left(5\sqrt{3}+2\right)y}{71}
y نى يېشىش
y=\frac{\left(2-5\sqrt{3}\right)x}{3}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5\sqrt{3}x-2x=-3y
ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
\left(5\sqrt{3}-2\right)x=-3y
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(5\sqrt{3}-2\right)x}{5\sqrt{3}-2}=-\frac{3y}{5\sqrt{3}-2}
ھەر ئىككى تەرەپنى 5\sqrt{3}-2 گە بۆلۈڭ.
x=-\frac{3y}{5\sqrt{3}-2}
5\sqrt{3}-2 گە بۆلگەندە 5\sqrt{3}-2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=-\frac{3\left(5\sqrt{3}+2\right)y}{71}
-3y نى 5\sqrt{3}-2 كە بۆلۈڭ.
3y-2x=-5\sqrt{3}x
ھەر ئىككى تەرەپتىن 5\sqrt{3}x نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3y=-5\sqrt{3}x+2x
2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
\frac{3y}{3}=\frac{\left(2-5\sqrt{3}\right)x}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
y=\frac{\left(2-5\sqrt{3}\right)x}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
y=\frac{-5\sqrt{3}x+2x}{3}
x\left(-5\sqrt{3}+2\right) نى 3 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}