ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}-3x=x-1
تارقىتىش قانۇنى بويىچە 3x نى x-1 گە كۆپەيتىڭ.
3x^{2}-3x-x=-1
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
3x^{2}-4x=-1
-3x بىلەن -x نى بىرىكتۈرۈپ -4x نى چىقىرىڭ.
3x^{2}-4x+1=0
1 نى ھەر ئىككى تەرەپكە قوشۇڭ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، -4 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
-4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
16 نى -12 گە قوشۇڭ.
x=\frac{-\left(-4\right)±2}{2\times 3}
4 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{4±2}{2\times 3}
-4 نىڭ قارشىسى 4 دۇر.
x=\frac{4±2}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{6}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{4±2}{6} نى يېشىڭ. 4 نى 2 گە قوشۇڭ.
x=1
6 نى 6 كە بۆلۈڭ.
x=\frac{2}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{4±2}{6} نى يېشىڭ. 4 دىن 2 نى ئېلىڭ.
x=\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=1 x=\frac{1}{3}
تەڭلىمە يېشىلدى.
3x^{2}-3x=x-1
تارقىتىش قانۇنى بويىچە 3x نى x-1 گە كۆپەيتىڭ.
3x^{2}-3x-x=-1
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
3x^{2}-4x=-1
-3x بىلەن -x نى بىرىكتۈرۈپ -4x نى چىقىرىڭ.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{2}{3} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{2}{3} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{2}{3} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى \frac{4}{9} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
كۆپەيتكۈچى x^{2}-\frac{4}{3}x+\frac{4}{9}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
ئاددىيلاشتۇرۇڭ.
x=1 x=\frac{1}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{2}{3} نى قوشۇڭ.