x نى يېشىش
x=\frac{y-5z+15}{3}
y نى يېشىش
y=3x+5z-15
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x+5z=15+y
y نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x=15+y-5z
ھەر ئىككى تەرەپتىن 5z نى ئېلىڭ.
3x=y-5z+15
تەڭلىمە ئۆلچەملىك بولدى.
\frac{3x}{3}=\frac{y-5z+15}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{y-5z+15}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{y}{3}-\frac{5z}{3}+5
15+y-5z نى 3 كە بۆلۈڭ.
-y+5z=15-3x
ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
-y=15-3x-5z
ھەر ئىككى تەرەپتىن 5z نى ئېلىڭ.
-y=15-5z-3x
تەڭلىمە ئۆلچەملىك بولدى.
\frac{-y}{-1}=\frac{15-5z-3x}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
y=\frac{15-5z-3x}{-1}
-1 گە بۆلگەندە -1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
y=3x+5z-15
15-3x-5z نى -1 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}