x نى يېشىش
x=-\frac{2}{3}\approx -0.666666667
x=\frac{1}{2}=0.5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6x^{2}-3x+4x-2=0
تارقىتىش قانۇنى بويىچە 3x نى 2x-1 گە كۆپەيتىڭ.
6x^{2}+x-2=0
-3x بىلەن 4x نى بىرىكتۈرۈپ x نى چىقىرىڭ.
a+b=1 ab=6\left(-2\right)=-12
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 6x^{2}+ax+bx-2 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,12 -2,6 -3,4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+12=11 -2+6=4 -3+4=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-3 b=4
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6x^{2}-3x\right)+\left(4x-2\right)
6x^{2}+x-2 نى \left(6x^{2}-3x\right)+\left(4x-2\right) شەكلىدە قايتا يېزىڭ.
3x\left(2x-1\right)+2\left(2x-1\right)
بىرىنچى گۇرۇپپىدىن 3x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(2x-1\right)\left(3x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-1 نى چىقىرىڭ.
x=\frac{1}{2} x=-\frac{2}{3}
تەڭلىمىنى يېشىش ئۈچۈن 2x-1=0 بىلەن 3x+2=0 نى يېشىڭ.
6x^{2}-3x+4x-2=0
تارقىتىش قانۇنى بويىچە 3x نى 2x-1 گە كۆپەيتىڭ.
6x^{2}+x-2=0
-3x بىلەن 4x نى بىرىكتۈرۈپ x نى چىقىرىڭ.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-2\right)}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، 1 نى b گە ۋە -2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1-24\left(-2\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+48}}{2\times 6}
-24 نى -2 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{49}}{2\times 6}
1 نى 48 گە قوشۇڭ.
x=\frac{-1±7}{2\times 6}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±7}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{6}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±7}{12} نى يېشىڭ. -1 نى 7 گە قوشۇڭ.
x=\frac{1}{2}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{8}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±7}{12} نى يېشىڭ. -1 دىن 7 نى ئېلىڭ.
x=-\frac{2}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-8}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{1}{2} x=-\frac{2}{3}
تەڭلىمە يېشىلدى.
6x^{2}-3x+4x-2=0
تارقىتىش قانۇنى بويىچە 3x نى 2x-1 گە كۆپەيتىڭ.
6x^{2}+x-2=0
-3x بىلەن 4x نى بىرىكتۈرۈپ x نى چىقىرىڭ.
6x^{2}+x=2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
\frac{6x^{2}+x}{6}=\frac{2}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}+\frac{1}{6}x=\frac{2}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{6}x=\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{1}{3}+\left(\frac{1}{12}\right)^{2}
\frac{1}{6}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{12} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{12} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{3}+\frac{1}{144}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{12} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{49}{144}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{1}{144} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{1}{12}\right)^{2}=\frac{49}{144}
كۆپەيتكۈچى x^{2}+\frac{1}{6}x+\frac{1}{144}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{12}=\frac{7}{12} x+\frac{1}{12}=-\frac{7}{12}
ئاددىيلاشتۇرۇڭ.
x=\frac{1}{2} x=-\frac{2}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{12} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}