ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+24x^{2}=0
تارقىتىش قانۇنى بويىچە 3x نى 1+8x گە كۆپەيتىڭ.
x\left(3+24x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-\frac{1}{8}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 3+24x=0 نى يېشىڭ.
3x+24x^{2}=0
تارقىتىش قانۇنى بويىچە 3x نى 1+8x گە كۆپەيتىڭ.
24x^{2}+3x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-3±\sqrt{3^{2}}}{2\times 24}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 24 نى a گە، 3 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-3±3}{2\times 24}
3^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-3±3}{48}
2 نى 24 كە كۆپەيتىڭ.
x=\frac{0}{48}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-3±3}{48} نى يېشىڭ. -3 نى 3 گە قوشۇڭ.
x=0
0 نى 48 كە بۆلۈڭ.
x=-\frac{6}{48}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-3±3}{48} نى يېشىڭ. -3 دىن 3 نى ئېلىڭ.
x=-\frac{1}{8}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-6}{48} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=0 x=-\frac{1}{8}
تەڭلىمە يېشىلدى.
3x+24x^{2}=0
تارقىتىش قانۇنى بويىچە 3x نى 1+8x گە كۆپەيتىڭ.
24x^{2}+3x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{24x^{2}+3x}{24}=\frac{0}{24}
ھەر ئىككى تەرەپنى 24 گە بۆلۈڭ.
x^{2}+\frac{3}{24}x=\frac{0}{24}
24 گە بۆلگەندە 24 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{8}x=\frac{0}{24}
3 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{3}{24} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{1}{8}x=0
0 نى 24 كە بۆلۈڭ.
x^{2}+\frac{1}{8}x+\left(\frac{1}{16}\right)^{2}=\left(\frac{1}{16}\right)^{2}
\frac{1}{8}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{16} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{16} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{1}{256}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{16} نىڭ كىۋادراتىنى تېپىڭ.
\left(x+\frac{1}{16}\right)^{2}=\frac{1}{256}
كۆپەيتكۈچى x^{2}+\frac{1}{8}x+\frac{1}{256}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{16}\right)^{2}}=\sqrt{\frac{1}{256}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{16}=\frac{1}{16} x+\frac{1}{16}=-\frac{1}{16}
ئاددىيلاشتۇرۇڭ.
x=0 x=-\frac{1}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{16} نى ئېلىڭ.