ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3\left(x^{2}-x-12\right)
3 نى ئاجرىتىپ چىقىرىڭ.
a+b=-1 ab=1\left(-12\right)=-12
x^{2}-x-12 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-12 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-12 2,-6 3,-4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-12=-11 2-6=-4 3-4=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=3
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-4x\right)+\left(3x-12\right)
x^{2}-x-12 نى \left(x^{2}-4x\right)+\left(3x-12\right) شەكلىدە قايتا يېزىڭ.
x\left(x-4\right)+3\left(x-4\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(x-4\right)\left(x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-4 نى چىقىرىڭ.
3\left(x-4\right)\left(x+3\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
3x^{2}-3x-36=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-36\right)}}{2\times 3}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-36\right)}}{2\times 3}
-3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-36\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{9+432}}{2\times 3}
-12 نى -36 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{441}}{2\times 3}
9 نى 432 گە قوشۇڭ.
x=\frac{-\left(-3\right)±21}{2\times 3}
441 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{3±21}{2\times 3}
-3 نىڭ قارشىسى 3 دۇر.
x=\frac{3±21}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{24}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{3±21}{6} نى يېشىڭ. 3 نى 21 گە قوشۇڭ.
x=4
24 نى 6 كە بۆلۈڭ.
x=-\frac{18}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{3±21}{6} نى يېشىڭ. 3 دىن 21 نى ئېلىڭ.
x=-3
-18 نى 6 كە بۆلۈڭ.
3x^{2}-3x-36=3\left(x-4\right)\left(x-\left(-3\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 4 نى x_{1} گە ۋە -3 نى x_{2} گە ئالماشتۇرۇڭ.
3x^{2}-3x-36=3\left(x-4\right)\left(x+3\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.