ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-13 ab=3\times 12=36
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 3x^{2}+ax+bx+12 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 36 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-9 b=-4
-13 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(3x^{2}-9x\right)+\left(-4x+12\right)
3x^{2}-13x+12 نى \left(3x^{2}-9x\right)+\left(-4x+12\right) شەكلىدە قايتا يېزىڭ.
3x\left(x-3\right)-4\left(x-3\right)
بىرىنچى گۇرۇپپىدىن 3x نى، ئىككىنچى گۇرۇپپىدىن -4 نى چىقىرىڭ.
\left(x-3\right)\left(3x-4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-3 نى چىقىرىڭ.
3x^{2}-13x+12=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\times 12}}{2\times 3}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 3\times 12}}{2\times 3}
-13 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-13\right)±\sqrt{169-12\times 12}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 3}
-12 نى 12 كە كۆپەيتىڭ.
x=\frac{-\left(-13\right)±\sqrt{25}}{2\times 3}
169 نى -144 گە قوشۇڭ.
x=\frac{-\left(-13\right)±5}{2\times 3}
25 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{13±5}{2\times 3}
-13 نىڭ قارشىسى 13 دۇر.
x=\frac{13±5}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{18}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{13±5}{6} نى يېشىڭ. 13 نى 5 گە قوشۇڭ.
x=3
18 نى 6 كە بۆلۈڭ.
x=\frac{8}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{13±5}{6} نى يېشىڭ. 13 دىن 5 نى ئېلىڭ.
x=\frac{4}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
3x^{2}-13x+12=3\left(x-3\right)\left(x-\frac{4}{3}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 3 نى x_{1} گە ۋە \frac{4}{3} نى x_{2} گە ئالماشتۇرۇڭ.
3x^{2}-13x+12=3\left(x-3\right)\times \frac{3x-4}{3}
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{4}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
3x^{2}-13x+12=\left(x-3\right)\left(3x-4\right)
3 بىلەن 3 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 3 نى يېيىشتۈرۈڭ.