ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}+x-\frac{1}{3}=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-\frac{1}{3}\right)}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 1 نى b گە ۋە -\frac{1}{3} نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\times 3\left(-\frac{1}{3}\right)}}{2\times 3}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1-12\left(-\frac{1}{3}\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+4}}{2\times 3}
-12 نى -\frac{1}{3} كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{5}}{2\times 3}
1 نى 4 گە قوشۇڭ.
x=\frac{-1±\sqrt{5}}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{\sqrt{5}-1}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±\sqrt{5}}{6} نى يېشىڭ. -1 نى \sqrt{5} گە قوشۇڭ.
x=\frac{-\sqrt{5}-1}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±\sqrt{5}}{6} نى يېشىڭ. -1 دىن \sqrt{5} نى ئېلىڭ.
x=\frac{\sqrt{5}-1}{6} x=\frac{-\sqrt{5}-1}{6}
تەڭلىمە يېشىلدى.
3x^{2}+x-\frac{1}{3}=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}+x-\frac{1}{3}-\left(-\frac{1}{3}\right)=-\left(-\frac{1}{3}\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{3} نى قوشۇڭ.
3x^{2}+x=-\left(-\frac{1}{3}\right)
-\frac{1}{3} دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
3x^{2}+x=\frac{1}{3}
0 دىن -\frac{1}{3} نى ئېلىڭ.
\frac{3x^{2}+x}{3}=\frac{\frac{1}{3}}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{1}{3}x=\frac{\frac{1}{3}}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{3}x=\frac{1}{9}
\frac{1}{3} نى 3 كە بۆلۈڭ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{1}{9}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{9}+\frac{1}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{5}{36}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{9} نى \frac{1}{36} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{1}{6}\right)^{2}=\frac{5}{36}
كۆپەيتكۈچى x^{2}+\frac{1}{3}x+\frac{1}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{5}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{6}=\frac{\sqrt{5}}{6} x+\frac{1}{6}=-\frac{\sqrt{5}}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{5}-1}{6} x=\frac{-\sqrt{5}-1}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.