ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}+x=11
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
3x^{2}+x-11=11-11
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 11 نى ئېلىڭ.
3x^{2}+x-11=0
11 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-11\right)}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 1 نى b گە ۋە -11 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\times 3\left(-11\right)}}{2\times 3}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1-12\left(-11\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+132}}{2\times 3}
-12 نى -11 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{133}}{2\times 3}
1 نى 132 گە قوشۇڭ.
x=\frac{-1±\sqrt{133}}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{\sqrt{133}-1}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±\sqrt{133}}{6} نى يېشىڭ. -1 نى \sqrt{133} گە قوشۇڭ.
x=\frac{-\sqrt{133}-1}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±\sqrt{133}}{6} نى يېشىڭ. -1 دىن \sqrt{133} نى ئېلىڭ.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
تەڭلىمە يېشىلدى.
3x^{2}+x=11
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{3x^{2}+x}{3}=\frac{11}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{1}{3}x=\frac{11}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{11}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{11}{3}+\frac{1}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{133}{36}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{11}{3} نى \frac{1}{36} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{1}{6}\right)^{2}=\frac{133}{36}
كۆپەيتكۈچى x^{2}+\frac{1}{3}x+\frac{1}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{133}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{6}=\frac{\sqrt{133}}{6} x+\frac{1}{6}=-\frac{\sqrt{133}}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.