x نى يېشىش
x=\frac{\sqrt{33}}{6}-\frac{3}{2}\approx -0.542572892
x=-\frac{\sqrt{33}}{6}-\frac{3}{2}\approx -2.457427108
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x^{2}+9x+4=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-9±\sqrt{9^{2}-4\times 3\times 4}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 9 نى b گە ۋە 4 نى c گە ئالماشتۇرۇڭ.
x=\frac{-9±\sqrt{81-4\times 3\times 4}}{2\times 3}
9 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-9±\sqrt{81-12\times 4}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-9±\sqrt{81-48}}{2\times 3}
-12 نى 4 كە كۆپەيتىڭ.
x=\frac{-9±\sqrt{33}}{2\times 3}
81 نى -48 گە قوشۇڭ.
x=\frac{-9±\sqrt{33}}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{\sqrt{33}-9}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-9±\sqrt{33}}{6} نى يېشىڭ. -9 نى \sqrt{33} گە قوشۇڭ.
x=\frac{\sqrt{33}}{6}-\frac{3}{2}
-9+\sqrt{33} نى 6 كە بۆلۈڭ.
x=\frac{-\sqrt{33}-9}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-9±\sqrt{33}}{6} نى يېشىڭ. -9 دىن \sqrt{33} نى ئېلىڭ.
x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
-9-\sqrt{33} نى 6 كە بۆلۈڭ.
x=\frac{\sqrt{33}}{6}-\frac{3}{2} x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
تەڭلىمە يېشىلدى.
3x^{2}+9x+4=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}+9x+4-4=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
3x^{2}+9x=-4
4 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{3x^{2}+9x}{3}=-\frac{4}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{9}{3}x=-\frac{4}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+3x=-\frac{4}{3}
9 نى 3 كە بۆلۈڭ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{4}{3}+\left(\frac{3}{2}\right)^{2}
3، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+3x+\frac{9}{4}=-\frac{4}{3}+\frac{9}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+3x+\frac{9}{4}=\frac{11}{12}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{4}{3} نى \frac{9}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{3}{2}\right)^{2}=\frac{11}{12}
كۆپەيتكۈچى x^{2}+3x+\frac{9}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{2}=\frac{\sqrt{33}}{6} x+\frac{3}{2}=-\frac{\sqrt{33}}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{33}}{6}-\frac{3}{2} x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{2} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}