ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=8 ab=3\times 4=12
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 3x^{2}+ax+bx+4 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,12 2,6 3,4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+12=13 2+6=8 3+4=7
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=6
8 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(3x^{2}+2x\right)+\left(6x+4\right)
3x^{2}+8x+4 نى \left(3x^{2}+2x\right)+\left(6x+4\right) شەكلىدە قايتا يېزىڭ.
x\left(3x+2\right)+2\left(3x+2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(3x+2\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x+2 نى چىقىرىڭ.
x=-\frac{2}{3} x=-2
تەڭلىمىنى يېشىش ئۈچۈن 3x+2=0 بىلەن x+2=0 نى يېشىڭ.
3x^{2}+8x+4=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-8±\sqrt{8^{2}-4\times 3\times 4}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 8 نى b گە ۋە 4 نى c گە ئالماشتۇرۇڭ.
x=\frac{-8±\sqrt{64-4\times 3\times 4}}{2\times 3}
8 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-8±\sqrt{64-12\times 4}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-8±\sqrt{64-48}}{2\times 3}
-12 نى 4 كە كۆپەيتىڭ.
x=\frac{-8±\sqrt{16}}{2\times 3}
64 نى -48 گە قوشۇڭ.
x=\frac{-8±4}{2\times 3}
16 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-8±4}{6}
2 نى 3 كە كۆپەيتىڭ.
x=-\frac{4}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-8±4}{6} نى يېشىڭ. -8 نى 4 گە قوشۇڭ.
x=-\frac{2}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-4}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{12}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-8±4}{6} نى يېشىڭ. -8 دىن 4 نى ئېلىڭ.
x=-2
-12 نى 6 كە بۆلۈڭ.
x=-\frac{2}{3} x=-2
تەڭلىمە يېشىلدى.
3x^{2}+8x+4=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}+8x+4-4=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
3x^{2}+8x=-4
4 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{3x^{2}+8x}{3}=-\frac{4}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
\frac{8}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{4}{3} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{4}{3} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{4}{3} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{4}{3} نى \frac{16}{9} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
كۆپەيتكۈچى x^{2}+\frac{8}{3}x+\frac{16}{9}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
ئاددىيلاشتۇرۇڭ.
x=-\frac{2}{3} x=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{4}{3} نى ئېلىڭ.