ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=4 ab=3\left(-4\right)=-12
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 3x^{2}+ax+bx-4 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,12 -2,6 -3,4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+12=11 -2+6=4 -3+4=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-2 b=6
4 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(3x^{2}-2x\right)+\left(6x-4\right)
3x^{2}+4x-4 نى \left(3x^{2}-2x\right)+\left(6x-4\right) شەكلىدە قايتا يېزىڭ.
x\left(3x-2\right)+2\left(3x-2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(3x-2\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-2 نى چىقىرىڭ.
3x^{2}+4x-4=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-4\right)}}{2\times 3}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-4±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-4±\sqrt{16-12\left(-4\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-4±\sqrt{16+48}}{2\times 3}
-12 نى -4 كە كۆپەيتىڭ.
x=\frac{-4±\sqrt{64}}{2\times 3}
16 نى 48 گە قوشۇڭ.
x=\frac{-4±8}{2\times 3}
64 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-4±8}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{4}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-4±8}{6} نى يېشىڭ. -4 نى 8 گە قوشۇڭ.
x=\frac{2}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{4}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{12}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-4±8}{6} نى يېشىڭ. -4 دىن 8 نى ئېلىڭ.
x=-2
-12 نى 6 كە بۆلۈڭ.
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{2}{3} نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
3x^{2}+4x-4=3\times \frac{3x-2}{3}\left(x+2\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{2}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
3x^{2}+4x-4=\left(3x-2\right)\left(x+2\right)
3 بىلەن 3 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 3 نى يېيىشتۈرۈڭ.