ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=23 ab=3\left(-8\right)=-24
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 3x^{2}+ax+bx-8 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,24 -2,12 -3,8 -4,6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -24 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-1 b=24
23 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(3x^{2}-x\right)+\left(24x-8\right)
3x^{2}+23x-8 نى \left(3x^{2}-x\right)+\left(24x-8\right) شەكلىدە قايتا يېزىڭ.
x\left(3x-1\right)+8\left(3x-1\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 8 نى چىقىرىڭ.
\left(3x-1\right)\left(x+8\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-1 نى چىقىرىڭ.
x=\frac{1}{3} x=-8
تەڭلىمىنى يېشىش ئۈچۈن 3x-1=0 بىلەن x+8=0 نى يېشىڭ.
3x^{2}+23x-8=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-23±\sqrt{23^{2}-4\times 3\left(-8\right)}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 23 نى b گە ۋە -8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-23±\sqrt{529-4\times 3\left(-8\right)}}{2\times 3}
23 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-23±\sqrt{529-12\left(-8\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-23±\sqrt{529+96}}{2\times 3}
-12 نى -8 كە كۆپەيتىڭ.
x=\frac{-23±\sqrt{625}}{2\times 3}
529 نى 96 گە قوشۇڭ.
x=\frac{-23±25}{2\times 3}
625 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-23±25}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{2}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-23±25}{6} نى يېشىڭ. -23 نى 25 گە قوشۇڭ.
x=\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{48}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-23±25}{6} نى يېشىڭ. -23 دىن 25 نى ئېلىڭ.
x=-8
-48 نى 6 كە بۆلۈڭ.
x=\frac{1}{3} x=-8
تەڭلىمە يېشىلدى.
3x^{2}+23x-8=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}+23x-8-\left(-8\right)=-\left(-8\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8 نى قوشۇڭ.
3x^{2}+23x=-\left(-8\right)
-8 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
3x^{2}+23x=8
0 دىن -8 نى ئېلىڭ.
\frac{3x^{2}+23x}{3}=\frac{8}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{23}{3}x=\frac{8}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{23}{3}x+\left(\frac{23}{6}\right)^{2}=\frac{8}{3}+\left(\frac{23}{6}\right)^{2}
\frac{23}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{23}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{23}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{8}{3}+\frac{529}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{23}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{625}{36}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{8}{3} نى \frac{529}{36} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{23}{6}\right)^{2}=\frac{625}{36}
كۆپەيتكۈچى x^{2}+\frac{23}{3}x+\frac{529}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{23}{6}\right)^{2}}=\sqrt{\frac{625}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{23}{6}=\frac{25}{6} x+\frac{23}{6}=-\frac{25}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{1}{3} x=-8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{23}{6} نى ئېلىڭ.