k نى يېشىش
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
x\neq -\frac{3}{2}
x نى يېشىش (complex solution)
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x نى يېشىش
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}\text{, }k\geq \frac{\sqrt{39}}{2}+4\text{ or }k\leq -\frac{\sqrt{39}}{2}+4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x^{2}+2kx+x+3k-2=0
تارقىتىش قانۇنى بويىچە 2k+1 نى x گە كۆپەيتىڭ.
2kx+x+3k-2=-3x^{2}
ھەر ئىككى تەرەپتىن 3x^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
2kx+3k-2=-3x^{2}-x
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2kx+3k=-3x^{2}-x+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(2x+3\right)k=-3x^{2}-x+2
k نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(2x+3\right)k=2-x-3x^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(2x+3\right)k}{2x+3}=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
ھەر ئىككى تەرەپنى 2x+3 گە بۆلۈڭ.
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
2x+3 گە بۆلگەندە 2x+3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}