A نى يېشىش
A=1-5x
x نى يېشىش
x=\frac{1-A}{5}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4+A=-2x+5-3x
ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
4+A=-5x+5
-2x بىلەن -3x نى بىرىكتۈرۈپ -5x نى چىقىرىڭ.
A=-5x+5-4
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
A=-5x+1
5 دىن 4 نى ئېلىپ 1 نى چىقىرىڭ.
3x+4+A+2x=5
2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
5x+4+A=5
3x بىلەن 2x نى بىرىكتۈرۈپ 5x نى چىقىرىڭ.
5x+A=5-4
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
5x+A=1
5 دىن 4 نى ئېلىپ 1 نى چىقىرىڭ.
5x=1-A
ھەر ئىككى تەرەپتىن A نى ئېلىڭ.
\frac{5x}{5}=\frac{1-A}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{1-A}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}