c نى يېشىش
c=1
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-15+3c-2\left(c-4\right)=2-7c-1
تارقىتىش قانۇنى بويىچە 3 نى -5+c گە كۆپەيتىڭ.
-15+3c-2c+8=2-7c-1
تارقىتىش قانۇنى بويىچە -2 نى c-4 گە كۆپەيتىڭ.
-15+c+8=2-7c-1
3c بىلەن -2c نى بىرىكتۈرۈپ c نى چىقىرىڭ.
-7+c=2-7c-1
-15 گە 8 نى قوشۇپ -7 نى چىقىرىڭ.
-7+c=1-7c
2 دىن 1 نى ئېلىپ 1 نى چىقىرىڭ.
-7+c+7c=1
7c نى ھەر ئىككى تەرەپكە قوشۇڭ.
-7+8c=1
c بىلەن 7c نى بىرىكتۈرۈپ 8c نى چىقىرىڭ.
8c=1+7
7 نى ھەر ئىككى تەرەپكە قوشۇڭ.
8c=8
1 گە 7 نى قوشۇپ 8 نى چىقىرىڭ.
c=\frac{8}{8}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
c=1
8 نى 8 گە بۆلۈپ 1 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}