ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}-2x+1=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، -2 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3}}{2\times 3}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-12}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{-8}}{2\times 3}
4 نى -12 گە قوشۇڭ.
x=\frac{-\left(-2\right)±2\sqrt{2}i}{2\times 3}
-8 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±2\sqrt{2}i}{2\times 3}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±2\sqrt{2}i}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{2+2\sqrt{2}i}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±2\sqrt{2}i}{6} نى يېشىڭ. 2 نى 2i\sqrt{2} گە قوشۇڭ.
x=\frac{1+\sqrt{2}i}{3}
2+2i\sqrt{2} نى 6 كە بۆلۈڭ.
x=\frac{-2\sqrt{2}i+2}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±2\sqrt{2}i}{6} نى يېشىڭ. 2 دىن 2i\sqrt{2} نى ئېلىڭ.
x=\frac{-\sqrt{2}i+1}{3}
2-2i\sqrt{2} نى 6 كە بۆلۈڭ.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
تەڭلىمە يېشىلدى.
3x^{2}-2x+1=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}-2x+1-1=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
3x^{2}-2x=-1
1 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{3x^{2}-2x}{3}=-\frac{1}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}-\frac{2}{3}x=-\frac{1}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{3} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{3} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{3} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى \frac{1}{9} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2}{9}
كۆپەيتكۈچى x^{2}-\frac{2}{3}x+\frac{1}{9}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{3}=\frac{\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2}i}{3}
ئاددىيلاشتۇرۇڭ.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{3} نى قوشۇڭ.