x نى يېشىش
x=\frac{\sqrt{97}-5}{6}\approx 0.808142967
x=\frac{-\sqrt{97}-5}{6}\approx -2.474809634
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x^{2}+5x+2=8
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
3x^{2}+5x+2-8=8-8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
3x^{2}+5x+2-8=0
8 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
3x^{2}+5x-6=0
2 دىن 8 نى ئېلىڭ.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-6\right)}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 5 نى b گە ۋە -6 نى c گە ئالماشتۇرۇڭ.
x=\frac{-5±\sqrt{25-4\times 3\left(-6\right)}}{2\times 3}
5 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-5±\sqrt{25-12\left(-6\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-5±\sqrt{25+72}}{2\times 3}
-12 نى -6 كە كۆپەيتىڭ.
x=\frac{-5±\sqrt{97}}{2\times 3}
25 نى 72 گە قوشۇڭ.
x=\frac{-5±\sqrt{97}}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{\sqrt{97}-5}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-5±\sqrt{97}}{6} نى يېشىڭ. -5 نى \sqrt{97} گە قوشۇڭ.
x=\frac{-\sqrt{97}-5}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-5±\sqrt{97}}{6} نى يېشىڭ. -5 دىن \sqrt{97} نى ئېلىڭ.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
تەڭلىمە يېشىلدى.
3x^{2}+5x+2=8
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
3x^{2}+5x+2-2=8-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
3x^{2}+5x=8-2
2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
3x^{2}+5x=6
8 دىن 2 نى ئېلىڭ.
\frac{3x^{2}+5x}{3}=\frac{6}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{5}{3}x=\frac{6}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{5}{3}x=2
6 نى 3 كە بۆلۈڭ.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=2+\left(\frac{5}{6}\right)^{2}
\frac{5}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{5}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{5}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=2+\frac{25}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{5}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{97}{36}
2 نى \frac{25}{36} گە قوشۇڭ.
\left(x+\frac{5}{6}\right)^{2}=\frac{97}{36}
كۆپەيتكۈچى x^{2}+\frac{5}{3}x+\frac{25}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{97}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{5}{6}=\frac{\sqrt{97}}{6} x+\frac{5}{6}=-\frac{\sqrt{97}}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{6} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}