ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3=2x^{3}+x
تارقىتىش قانۇنى بويىچە 2x^{2}+1 نى x گە كۆپەيتىڭ.
2x^{3}+x=3
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2x^{3}+x-3=0
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ.
±\frac{3}{2},±3,±\frac{1}{2},±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -3 نى بۆلىدۇ، q باش كوئېففىتسېنت 2 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=1
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
2x^{2}+2x+3=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. 2x^{3}+x-3 نى x-1 گە بۆلۈپ 2x^{2}+2x+3 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 3}}{2\times 2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 2 نى a گە، 2 نى b گە ۋە 3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-2±\sqrt{-20}}{4}
ھېسابلاڭ.
x=\frac{-\sqrt{5}i-1}{2} x=\frac{-1+\sqrt{5}i}{2}
2x^{2}+2x+3=0 دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=1 x=\frac{-\sqrt{5}i-1}{2} x=\frac{-1+\sqrt{5}i}{2}
بارلىق يېشىمنى تىزىڭ.
3=2x^{3}+x
تارقىتىش قانۇنى بويىچە 2x^{2}+1 نى x گە كۆپەيتىڭ.
2x^{3}+x=3
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2x^{3}+x-3=0
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ.
±\frac{3}{2},±3,±\frac{1}{2},±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -3 نى بۆلىدۇ، q باش كوئېففىتسېنت 2 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=1
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
2x^{2}+2x+3=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. 2x^{3}+x-3 نى x-1 گە بۆلۈپ 2x^{2}+2x+3 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 3}}{2\times 2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 2 نى a گە، 2 نى b گە ۋە 3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-2±\sqrt{-20}}{4}
ھېسابلاڭ.
x\in \emptyset
مەنپىي ساننىڭ كىۋادرات يىلتىزى ھەقىقىي قىسىمدا ئېنىقلانمىغاچقا يېشىم يوق.
x=1
بارلىق يېشىمنى تىزىڭ.