25 m / s = \text { dam / } h
a نى يېشىش
\left\{\begin{matrix}a=\frac{25h}{ds}\text{, }&s\neq 0\text{ and }d\neq 0\text{ and }h\neq 0\\a\in \mathrm{R}\text{, }&m=0\text{ and }s\neq 0\text{ and }h\neq 0\end{matrix}\right.
d نى يېشىش
\left\{\begin{matrix}d=\frac{25h}{as}\text{, }&s\neq 0\text{ and }a\neq 0\text{ and }h\neq 0\\d\in \mathrm{R}\text{, }&m=0\text{ and }s\neq 0\text{ and }h\neq 0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
h\times 25m=sdam
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى s,h نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى hs گە كۆپەيتىڭ.
sdam=h\times 25m
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
dmsa=25hm
تەڭلىمە ئۆلچەملىك بولدى.
\frac{dmsa}{dms}=\frac{25hm}{dms}
ھەر ئىككى تەرەپنى sdm گە بۆلۈڭ.
a=\frac{25hm}{dms}
sdm گە بۆلگەندە sdm گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
a=\frac{25h}{ds}
25hm نى sdm كە بۆلۈڭ.
h\times 25m=sdam
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى s,h نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى hs گە كۆپەيتىڭ.
sdam=h\times 25m
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
amsd=25hm
تەڭلىمە ئۆلچەملىك بولدى.
\frac{amsd}{ams}=\frac{25hm}{ams}
ھەر ئىككى تەرەپنى sam گە بۆلۈڭ.
d=\frac{25hm}{ams}
sam گە بۆلگەندە sam گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
d=\frac{25h}{as}
25hm نى sam كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}