كۆپەيتكۈچى
\left(2y-3\right)\left(y+8\right)
ھېسابلاش
\left(2y-3\right)\left(y+8\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=13 ab=2\left(-24\right)=-48
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 2y^{2}+ay+by-24 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,48 -2,24 -3,16 -4,12 -6,8
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -48 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-3 b=16
13 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(2y^{2}-3y\right)+\left(16y-24\right)
2y^{2}+13y-24 نى \left(2y^{2}-3y\right)+\left(16y-24\right) شەكلىدە قايتا يېزىڭ.
y\left(2y-3\right)+8\left(2y-3\right)
بىرىنچى گۇرۇپپىدىن y نى، ئىككىنچى گۇرۇپپىدىن 8 نى چىقىرىڭ.
\left(2y-3\right)\left(y+8\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2y-3 نى چىقىرىڭ.
2y^{2}+13y-24=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
y=\frac{-13±\sqrt{13^{2}-4\times 2\left(-24\right)}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
y=\frac{-13±\sqrt{169-4\times 2\left(-24\right)}}{2\times 2}
13 نىڭ كىۋادراتىنى تېپىڭ.
y=\frac{-13±\sqrt{169-8\left(-24\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
y=\frac{-13±\sqrt{169+192}}{2\times 2}
-8 نى -24 كە كۆپەيتىڭ.
y=\frac{-13±\sqrt{361}}{2\times 2}
169 نى 192 گە قوشۇڭ.
y=\frac{-13±19}{2\times 2}
361 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
y=\frac{-13±19}{4}
2 نى 2 كە كۆپەيتىڭ.
y=\frac{6}{4}
± پىلۇس بولغاندىكى تەڭلىمە y=\frac{-13±19}{4} نى يېشىڭ. -13 نى 19 گە قوشۇڭ.
y=\frac{3}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
y=-\frac{32}{4}
± مىنۇس بولغاندىكى تەڭلىمە y=\frac{-13±19}{4} نى يېشىڭ. -13 دىن 19 نى ئېلىڭ.
y=-8
-32 نى 4 كە بۆلۈڭ.
2y^{2}+13y-24=2\left(y-\frac{3}{2}\right)\left(y-\left(-8\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{3}{2} نى x_{1} گە ۋە -8 نى x_{2} گە ئالماشتۇرۇڭ.
2y^{2}+13y-24=2\left(y-\frac{3}{2}\right)\left(y+8\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
2y^{2}+13y-24=2\times \frac{2y-3}{2}\left(y+8\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق y دىن \frac{3}{2} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
2y^{2}+13y-24=\left(2y-3\right)\left(y+8\right)
2 بىلەن 2 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 2 نى يېيىشتۈرۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}