ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x^{2}+2x\left(-\frac{3}{2}\right)=11
تارقىتىش قانۇنى بويىچە 2x نى x-\frac{3}{2} گە كۆپەيتىڭ.
2x^{2}-3x=11
2 ۋە 2 نى يېيىشتۈرۈڭ.
2x^{2}-3x-11=0
ھەر ئىككى تەرەپتىن 11 نى ئېلىڭ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-11\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -3 نى b گە ۋە -11 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-11\right)}}{2\times 2}
-3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-11\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{9+88}}{2\times 2}
-8 نى -11 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{97}}{2\times 2}
9 نى 88 گە قوشۇڭ.
x=\frac{3±\sqrt{97}}{2\times 2}
-3 نىڭ قارشىسى 3 دۇر.
x=\frac{3±\sqrt{97}}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{\sqrt{97}+3}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{3±\sqrt{97}}{4} نى يېشىڭ. 3 نى \sqrt{97} گە قوشۇڭ.
x=\frac{3-\sqrt{97}}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{3±\sqrt{97}}{4} نى يېشىڭ. 3 دىن \sqrt{97} نى ئېلىڭ.
x=\frac{\sqrt{97}+3}{4} x=\frac{3-\sqrt{97}}{4}
تەڭلىمە يېشىلدى.
2x^{2}+2x\left(-\frac{3}{2}\right)=11
تارقىتىش قانۇنى بويىچە 2x نى x-\frac{3}{2} گە كۆپەيتىڭ.
2x^{2}-3x=11
2 ۋە 2 نى يېيىشتۈرۈڭ.
\frac{2x^{2}-3x}{2}=\frac{11}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}-\frac{3}{2}x=\frac{11}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{11}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{11}{2}+\frac{9}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{97}{16}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{11}{2} نى \frac{9}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{3}{4}\right)^{2}=\frac{97}{16}
كۆپەيتكۈچى x^{2}-\frac{3}{2}x+\frac{9}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{4}=\frac{\sqrt{97}}{4} x-\frac{3}{4}=-\frac{\sqrt{97}}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{97}+3}{4} x=\frac{3-\sqrt{97}}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نى قوشۇڭ.