ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x^{2}+3x=-1
تارقىتىش قانۇنى بويىچە 2x نى x+1.5 گە كۆپەيتىڭ.
2x^{2}+3x+1=0
1 نى ھەر ئىككى تەرەپكە قوشۇڭ.
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، 3 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-3±\sqrt{9-4\times 2}}{2\times 2}
3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-3±\sqrt{9-8}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-3±\sqrt{1}}{2\times 2}
9 نى -8 گە قوشۇڭ.
x=\frac{-3±1}{2\times 2}
1 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-3±1}{4}
2 نى 2 كە كۆپەيتىڭ.
x=-\frac{2}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-3±1}{4} نى يېشىڭ. -3 نى 1 گە قوشۇڭ.
x=-\frac{1}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{4}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-3±1}{4} نى يېشىڭ. -3 دىن 1 نى ئېلىڭ.
x=-1
-4 نى 4 كە بۆلۈڭ.
x=-\frac{1}{2} x=-1
تەڭلىمە يېشىلدى.
2x^{2}+3x=-1
تارقىتىش قانۇنى بويىچە 2x نى x+1.5 گە كۆپەيتىڭ.
\frac{2x^{2}+3x}{2}=-\frac{1}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\frac{3}{2}x=-\frac{1}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{2} نى \frac{9}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{3}{4}\right)^{2}=\frac{1}{16}
كۆپەيتكۈچى x^{2}+\frac{3}{2}x+\frac{9}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{4}=\frac{1}{4} x+\frac{3}{4}=-\frac{1}{4}
ئاددىيلاشتۇرۇڭ.
x=-\frac{1}{2} x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{4} نى ئېلىڭ.