ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}-4x-12=0
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a+b=-4 ab=1\left(-12\right)=-12
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-12 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-12 2,-6 3,-4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-12=-11 2-6=-4 3-4=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-6 b=2
-4 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 نى \left(x^{2}-6x\right)+\left(2x-12\right) شەكلىدە قايتا يېزىڭ.
x\left(x-6\right)+2\left(x-6\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(x-6\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-6 نى چىقىرىڭ.
x=6 x=-2
تەڭلىمىنى يېشىش ئۈچۈن x-6=0 بىلەن x+2=0 نى يېشىڭ.
2x^{2}-8x-24=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -8 نى b گە ۋە -24 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
-8 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
-8 نى -24 كە كۆپەيتىڭ.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
64 نى 192 گە قوشۇڭ.
x=\frac{-\left(-8\right)±16}{2\times 2}
256 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{8±16}{2\times 2}
-8 نىڭ قارشىسى 8 دۇر.
x=\frac{8±16}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{24}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{8±16}{4} نى يېشىڭ. 8 نى 16 گە قوشۇڭ.
x=6
24 نى 4 كە بۆلۈڭ.
x=-\frac{8}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{8±16}{4} نى يېشىڭ. 8 دىن 16 نى ئېلىڭ.
x=-2
-8 نى 4 كە بۆلۈڭ.
x=6 x=-2
تەڭلىمە يېشىلدى.
2x^{2}-8x-24=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
2x^{2}-8x-24-\left(-24\right)=-\left(-24\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 24 نى قوشۇڭ.
2x^{2}-8x=-\left(-24\right)
-24 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
2x^{2}-8x=24
0 دىن -24 نى ئېلىڭ.
\frac{2x^{2}-8x}{2}=\frac{24}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{24}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-4x=\frac{24}{2}
-8 نى 2 كە بۆلۈڭ.
x^{2}-4x=12
24 نى 2 كە بۆلۈڭ.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
-4، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -2 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -2 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-4x+4=12+4
-2 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-4x+4=16
12 نى 4 گە قوشۇڭ.
\left(x-2\right)^{2}=16
كۆپەيتكۈچى x^{2}-4x+4. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-2=4 x-2=-4
ئاددىيلاشتۇرۇڭ.
x=6 x=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.