x نى يېشىش
x\in \left(-\infty,0\right)\cup \left(\frac{5}{2},\infty\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x\left(2x-5\right)>0
x نى ئاجرىتىپ چىقىرىڭ.
x<0 x-\frac{5}{2}<0
ھاسىلاتنىڭ مۇسبەت بولۇشى ئۈچۈن x ۋە x-\frac{5}{2} نىڭ ھەر ئىككىسى مەنپىي ياكى ھەر ئىككىسى مۇسبەت بولۇشى كېرەك. x بىلەن x-\frac{5}{2} نىڭ ھەر ئىككىسى مەنپىي بولغان ئەھۋالنى ئويلىشىڭ.
x<0
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x<0 دۇر.
x-\frac{5}{2}>0 x>0
x بىلەن x-\frac{5}{2} نىڭ ھەر ئىككىسى مۇسبەت بولغان ئەھۋالنى ئويلىشىڭ.
x>\frac{5}{2}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x>\frac{5}{2} دۇر.
x<0\text{; }x>\frac{5}{2}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}