ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x^{2}-3x+3=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 3}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -3 نى b گە ۋە 3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\times 3}}{2\times 2}
-3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-8\times 3}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-24}}{2\times 2}
-8 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{-15}}{2\times 2}
9 نى -24 گە قوشۇڭ.
x=\frac{-\left(-3\right)±\sqrt{15}i}{2\times 2}
-15 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{3±\sqrt{15}i}{2\times 2}
-3 نىڭ قارشىسى 3 دۇر.
x=\frac{3±\sqrt{15}i}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{3+\sqrt{15}i}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{3±\sqrt{15}i}{4} نى يېشىڭ. 3 نى i\sqrt{15} گە قوشۇڭ.
x=\frac{-\sqrt{15}i+3}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{3±\sqrt{15}i}{4} نى يېشىڭ. 3 دىن i\sqrt{15} نى ئېلىڭ.
x=\frac{3+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i+3}{4}
تەڭلىمە يېشىلدى.
2x^{2}-3x+3=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
2x^{2}-3x+3-3=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
2x^{2}-3x=-3
3 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{2x^{2}-3x}{2}=-\frac{3}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}-\frac{3}{2}x=-\frac{3}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{3}{2}+\frac{9}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{15}{16}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{3}{2} نى \frac{9}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{3}{4}\right)^{2}=-\frac{15}{16}
كۆپەيتكۈچى x^{2}-\frac{3}{2}x+\frac{9}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{4}=\frac{\sqrt{15}i}{4} x-\frac{3}{4}=-\frac{\sqrt{15}i}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{3+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i+3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نى قوشۇڭ.