ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=7 ab=2\times 5=10
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 2x^{2}+ax+bx+5 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,10 2,5
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 10 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+10=11 2+5=7
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=5
7 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(2x^{2}+2x\right)+\left(5x+5\right)
2x^{2}+7x+5 نى \left(2x^{2}+2x\right)+\left(5x+5\right) شەكلىدە قايتا يېزىڭ.
2x\left(x+1\right)+5\left(x+1\right)
بىرىنچى گۇرۇپپىدىن 2x نى، ئىككىنچى گۇرۇپپىدىن 5 نى چىقىرىڭ.
\left(x+1\right)\left(2x+5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+1 نى چىقىرىڭ.
2x^{2}+7x+5=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
-8 نى 5 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{9}}{2\times 2}
49 نى -40 گە قوشۇڭ.
x=\frac{-7±3}{2\times 2}
9 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-7±3}{4}
2 نى 2 كە كۆپەيتىڭ.
x=-\frac{4}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-7±3}{4} نى يېشىڭ. -7 نى 3 گە قوشۇڭ.
x=-1
-4 نى 4 كە بۆلۈڭ.
x=-\frac{10}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-7±3}{4} نى يېشىڭ. -7 دىن 3 نى ئېلىڭ.
x=-\frac{5}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-10}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
2x^{2}+7x+5=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -1 نى x_{1} گە ۋە -\frac{5}{2} نى x_{2} گە ئالماشتۇرۇڭ.
2x^{2}+7x+5=2\left(x+1\right)\left(x+\frac{5}{2}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
2x^{2}+7x+5=2\left(x+1\right)\times \frac{2x+5}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
2x^{2}+7x+5=\left(x+1\right)\left(2x+5\right)
2 بىلەن 2 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 2 نى يېيىشتۈرۈڭ.